Automatic Object Extraction from Full Differential Morphological Profile in Urban Imagery for Efficient Object Indexing and Retrievals
نویسندگان
چکیده
The differential morphological profile (DMP) can be used for automated extraction of multi-scale urban features, such as buildings, shadows, roads, and other man-made objects. However, characterization of urban features using the DMP is complicated by the fact that some objects will have response at multiple-scales within the DMP. This makes robust and efficient object indexing and retrieval difficult for large-scale remote sensing image databases utilized in the defense and intelligence communities. To address this issue, in this paper we present a novel approach called Multi-scale Extraction of Morphological Objects (MEMO),which is fully automatic and unsupervised. MEMO contains two processing modules for identifying urban objects: (1) Top-down object fusion: multi-scale objects from both morphological closing and opening profiles with certain topological relationships (TR), such as overlap, equal, and inside, will be selected for candidate objects and placed in the candidate pool. (2) Knowledge-based filtering: objects of the DMP are refined and filtered using information present in the original panchromatic image, spectral information of the scene, and the processed DMP. For example, areas of vegetative land cover are filtered out reducing the false labelling of tree clusters and fields candidate objects. Additionally, size and shape analysis of candidate objects can further eliminate possible false object extraction. The efficiency of our algorithm makes it applicable to large-scale object indexing and retrieval.
منابع مشابه
Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملIdentify Damaged Buildings from High-resolution Satellite Imagery in Hazard Area Using Differential Morphological Profile
International Conference on Sustainable Built Environment (ICSBE-2010) Kandy, 13-14 December 2010 Abstract: This paper presets a methodology and results of evaluating damaged building detection algorithms using an object recognition task based on Differential Morphological Profile (DMP) for Very High Resolution (VHR) remotely sensed images. The proposed approach involves several advanced morpho...
متن کامل